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Abstract. The current paper explores a novel approach for determining 
temperature variations by integrating the modal parameters and AI 
techniques. The research focuses on the development of a comprehensive 
dataset for training an AI model encompassing an analytical method that 
considers thermal conditions and natural frequencies. Traditional methods 
of temperature measurement, like infrared and platinum resistance 
thermometers, often face limitations in terms of accuracy, especially in 
complex or dynamic environments having an uncertainty of ±3.6 °C [1], 
respectively ±0.2 °C [2]. In this study, we propose a methodology that 
harnesses the inherent relationship between axial loads caused by 
temperature variations and the change in natural frequencies of a double 
clamped steel beam. The measured natural frequency data is collected and 
fed into the AI model, specifically, for a robust temperature estimation, 
obtaining a maximum predicted temperature deviation of 0.386 °C. 
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1. Introduction

Environmental variations can modify the modal characteristics of structures [3], 
which can result in a correlation between the natural frequencies and temperature. 
The effect of temperature is considered by most researchers as the most significant 
in the change in the dynamic behavior of the structure rigidly fixed at the ends [4 - 6]. 
Its effect on the natural frequencies of metallic structures is presented in [7, 8]. In 
the work [9], a study was carried out in which the influence of the temperature upon 
the natural frequencies of a simply supported reinforced concrete beam is analyzed, 
and the effect of the temperature variation is quantified.  
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In papers [10, 11] the authors found that the variations in natural frequencies 
caused by the temperature changes were comprised of between 4.7 and 6.6 %, which 
was more significant than the changes caused by an artificial cut. 

The current study proposes a machine-learning model that can predict environmental 
temperature changes by considering the natural frequency shift due to temperature 
changes in double-clamped steel beams. The changes in the eigenfrequencies are 
determined by the axial forces developed by the fixed expanding structure [12]. The 
considered structure is a double-clamped steel beam, with its properties denoted in 
Table 1. 

Table 1. Physical-mechanical properties of the material  

Mass density ρ 
[kg/m3] 

Young modulus 
E [N/m2] 

Poisson ratio 
υ [-] 

Thermal expansion 
coefficient α [mm/°C] 

7850 2.06·1011 0.28 0.015 

 
The considered beam’s geometry and dimensions in mm are presented in Fig 1. 

 
Figure 1. Double-clamped beam 

 
By considering a reference temperature Tref which is increased with ΔT, the 

internal force is given by [13]: 

 ( ) α= ⋅ ⋅ ⋅ ∆P T E A T  (1) 

where A is the cross-section of the beam, E is the elasticity modulus and α is the 
thermal expansion coefficient. 

The characteristic equation for a beam fixed at both ends is [10]: 

 sin 2cos 2 0ζ ζ ζ+ − =  (2) 

The critical forces Pcr and critical temperature Tcr can be found as [10]: 
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By applying the transcendental Equation (5), the values for the first six bending 
vibration modes are obtained [10]:  

 1 cos cosh 0λ λ+ ⋅ =  (5) 

For a compression load scenario with fixed-fixed ends, when ζi is not equal to 
λi, the natural frequencies can be calculated using Equation (6) [10]. 
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The mathematical equation representing the frequency change due to temperature 
variation is derived by inserting Equations (1) and (3) into Equation (6), resulting in 
[10]: 
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where ki(T) is the temperature adjustment coefficient.  
For a reference temperature Tref, the first six buckling eigenvalues ζi, the bending 

vibration eigenvalues λi critical force Pcr, and critical temperature Tcr values for the 
double-clamped beam are shown in Table 2. 

Table 2. The first six eigenvalues, critical forces, and temperatures 

Buckling 
mode i  

Eigenvalue 
ζi 

Eigenvalue 
λi 

Critical force 
Pcr-i [N] 

Critical 
temperature Tcr-i 

[°C] 

1 6.283185307 4.7300407 6.777128355 22.28607549 

2 8.986818916 7.8532046 1386.430028 80.52385089 

3 12.56637061 10.9956078 2710.851342 136.4301959 

4 15.45050367 14.1371654 4097.993428 194.9841042 

5 18.84955592 17.2787596 6099.41552 279.4679409 

6 21.80824332 20.4203522 8164.457682 366.6373019 
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Applying the described method, a database consisting of the Relative Frequency 
Shifts (RFS’s) is generated using Equation 8, by considering the reference temperature 
Tref=22°C and the iterative temperature increase of Δt=2°C, until Tfinal=50° thus 
obtaining 141 scenarios including the reference temperature where the RFS values 
for all modes are zero. 
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2. Training the ANN 

A robust ANN for predictive analysis is modeled using the nntool with Bayesian 
regularization through MATLAB software with a focus on predicting temperatures 
using the RFS data which was inserted as input [11]. The Bayesian regularization 
approach is used to prevent the overfitting phenomenon and to enhance the network’s 
ability to better generalize on new data. The ANN is composed of two hidden layers, 
each containing 30 neurons, with its architecture presented in Figure 2. 

 

 
Figure 2. Network architecture 

 

  
a         b 

Figure 3. Network performance plots 
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Evaluating the trained neural network’s performance involves employing 
visualization tools such as performance curves (Figure 3a) and regression plots 
(Figure 3b). 70 % of the data is used for training, 15% for validation, and 15% for 
testing. The performance curves offer a dynamic view of the network’s learning 
process, typically accuracy or error rate, plotted against the number of training 
iterations. Regression plots, on the other hand, visually compare predicted values 
against actual data points. 

3. Evaluating the accuracy of the ANN 

In the testing phase of the Artificial Neural Network (ANN), SolidWorks 
frequency simulations were employed to model the necessary conditions for a 
double-clamped beam model, as illustrated in Figure 1. The material properties were 
defined using plain carbon steel from the library. A fine solid mesh having 20111 
nodes and 11598 total elements is applied, and the analysis is run across various 
thermal scenarios, simulating different temperatures affecting the beam coupled with 
the modal analysis, with an example illustrated in Figure 4. All defined scenarios are 
presented in Table 3. During each simulation, the natural frequencies for the first six 
bending vibration modes were recorded, starting from the reference temperature 
Tref=22°C and continuing with other beam temperatures.  

 

 
Figure 4. Frequency analysis and geometry meshing 

4. Results and discussions 

These frequency values served as inputs for calculating the Relative Frequency 
Shifts (RFSs) using Equation 8. The RFS values were utilized as testing data for the 
ANN. For each simulation scenario, the predicted temperatures were compared with the 
known temperatures obtained from SolidWorks frequency simulations. By applying 
several thermal conditions, the ANN’s capability to accurately predict temperatures 
demonstrates its ability to generalize. The obtained results are presented in Table 3. 
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         Table 3. Temperature scenarios and obtained results  

Scen no. Known 
temperature [°C] 

Predicted 
temperature [°C] 

Temp. 
difference 

1 28 28.0000 0 

2 22.5 22.4421 0.0579 

3 23.2 23.1049 0.0951 

4 23.9 23.7569 0.1431 

5 33.5 33.7700 -0.270 

6 42.1 41.7142 0.3858 

 
 

Based on the obtained results, with errors not exceeding 0.92 %, the ANN 
demonstrates that it can predict the temperature with high accuracy, even when it is 
trained by using analytical data and tested with new data generated by simulations, 
thus having to deal with new RFS values that are not fitting 100% with the calculated 
ones, as illustrated in Figure 5 for cases 6 and 2.  
 

  
Figure 5. Comparison of calculated and FEM RFS values for scenarios 6 and 2 
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5. Conclusion  

The current paper presents novel research for predicting the temperature by 
using modal parameters of structures such as the natural frequencies, coupled with 
intelligent learning models developed through specialized software. 

An earlier developed mathematical method is used for generating the necessary 
training data to develop an ANN model that can predict the temperature by 
calculating thermal adjustment coefficients and calculating the RFS input data. 

The ANN model is tested with new data, employing FEM simulations, and the 
results obtained illustrate a maximum deviation of 0.3858 °C, thus obtaining a 
temperature reading of high accuracy. Even if the accuracy does not reach that of 
liquid-in-glass thermometers, that can achieve a measurement uncertainty of ±0.01 
°C [2], the experiment demonstrated that achieving even better temperature accuracy 
is feasible through the careful adjustment of hyperparameters in the Artificial Neural 
Network (ANN) and the utilization of a substantially larger training dataset. 

The findings suggest that investing time and resources into optimizing the 
hyperparameters of the ANN, coupled with the acquisition of an extensive and varied 
dataset, can lead to significant improvements in temperature accuracy. This approach 
holds promise for applications where precise temperature measurements are critical, 
offering a pathway for enhancing the reliability and performance of temperature 
prediction models. 
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